

Mehr Vertrauen.

Technical Report No. 713368189

Revision: 00

10.04.2025 From:

SGH Schüttguthandling GmbH & Co. KG Applicant:

Daimler-Straße 3 78256 Steißlingen

Germany

Discharge Aids Test Object

EN IEC 60079-0: 2018, Abs. 26.17 **Test Specifications:**

IEC TS 60079-32-1:2017 Table 4

TÜV SÜD Product Service GmbH, Ridlerstraße 65, 80339 Munich. **Testing Laboratory**

10 different test samples were submitted. Test Sample:

Order Description Charge transfer measurement of discharge aids made from different materials

according to the test specification, including a technical report.

A discharge was measured in two out of ten test samples. See the following Test Result:

sections for details.

The test result applies only to the specified test samples.

Not applicable Safety-relevant Information

> This technical report may only be reproduced in its full text. Use for advertising purposes requires written permission. It contains the result of a one-time investigation of the product submitted for testing and does not constitute a general assessment of the properties from ongoing production.

1 TEST OBJECT SPECIFICATION

1.1 Description

The test object comprises discharge aids manufactured from various materials. These components are integrated into containers (such as silos, small bins, filters, bag dump stations, etc.) and pipelines to promote the flowability of bulk solids and to ensure their continued movement.

1.2 Product Image of Test Sample

1.1 Silicone

1.3 detectable

1.5 EPDM-FDA

1.2 SAN

1.4 Silicone hot

1.6 EPDM-FDA

TÜV SÜD Product Service GmbH

1.7 FKM-FDA

1.9 TPE-FDA/EU 1935-2004

1.8 FKM

1.0 VibraPad weiß

1.3 **Technical Deta**

Table 1 Material Data Sheet VibraPad 100 1.1 SiW SB

Characteristic	Value
Nominal Diameter	100
Material	Silicone
Temperature Range	-40 °C to 200 °C
Colour	White

Table 2 Material Data Sheet VibraPad 100 1.2 SAN

Characteristic	Value
Nominal Diameter	100
Material	Silicone
Temperature Range	-30 °C to 180 °C
Colour	Blue

Table 3 Material Data Sheet VibraPad 100 1.3 Detect

Characteristic	Value
Nominal Diameter	100
Material	Silicone
Temperature Range	-40 °C to 200 °C
Colour	Blue

Table 4 Material Data Sheet VibraPad 100 1.4 hot

Characteristic	Value	
Nominal Diameter	100	
Material	Silicone	
Temperature Range	-40 °C to 300 °C	
Colour	Red-orange	

Table 5 Material Data Sheet VibraPad 100 1.5 EPDMs

Characteristic	Value	
Nominal Diameter	100	
Material	EPDM	_
Temperature Range	150 °C	_
Colour	Black	

TÜV SÜD Product Service GmbH

Table 6 Material Data Sheet VibraPad 100 1.6 EPDMw

Characteristic	Value
Nominal Diameter	100
Material	EPDM
Temperature Range	100 °C
Colour	White

Table 7 Material Data Sheet VibraPad 100 1.7 FKM

Characteristic	Value
Nominal Diameter	100
Material	FKM
Temperature Range	220 °C
Colour	Green

Table 8 Material Data Sheet VibraPad 100 1.8 FKM

Characteristic	Value	
Nominal Diameter	100	
Material	FKM	
Temperature Range	220 °C	
Colour	Black	

Table 9 Material Data Sheet VibraPad 100 1.9 TPE

Characteristic	Value
Nominal Diameter	100
Material	TPE
Temperature Range	-40 to 120 °C
Colour	White

Table 10 Material Data Sheet VibraPad 100 SIB SB (comparable to 1.1)

Characteristic	Value
Nominal Diameter	100
Material	Silicone
Temperature Range	-60 to 200 °C
Colour	Blue

This information was provided by the client, and the material properties have not been verified

2 TEST SETUP

2.1 Conditioning

The test sample is cleaned with isopropyl alcohol, rinsed with distilled water, and dried. Then, the test sample is stored in a walk-in climate chamber for 24 hours at 21 °C and 26% relative humidity.

2.2 Used Measuring Instruments and Testing Devices

The following measuring instruments were used for the test:

Table 11 measuring devices

Instrument	TM ID	Calibrated Until
Coulomb meter	5965	06.09.2026
High Voltage Generator with	5974	Not applicable
Corona Discharge Tip		(Supplementary)
Grounded Metal Plate	Not applicable	Not applicable
PTFE-Disc 200 cm ²	52622	Not applicable
		(Supplementary)
Polyamide Cloth	Not applicable	Not applicable
Cotton Cloth	Not applicable	Not applicable
Climate Chamber	42	06.11.2025

1 Metal plate grounded and reference disc made of PTFE

2 High voltage generator with corona charging tip

TÜV SÜD Product Service GmbH

2.3 **Execution**

The test is conducted in a room with a temperature of 22 °C and 27 % relative humidity.

The measurement of the transferred charge of the test sample is carried out using three methods:

- Charging by rubbing with a cloth made of pure polyamide
- Charging by rubbing with a cotton cloth
- Charging with a DC high-voltage source

The test sample is placed on a grounded metal plate.

The charging of the test material by friction is done by rubbing ten times with the polyamide or cotton cloth.

The charging with the DC high-voltage source is done with a spray electrode, which is positioned 30 mm above the test sample's surface and is charged with a voltage of 70 kV between the negative electrode and ground. The spray electrode is moved for 30 seconds.

The test sample is then carefully removed from the table without discharging it. The test sample is tested by slowly approaching the spherical electrode (25 mm diameter) of the Coulomb meter until a discharge occurs.

For each method of charging, 10 tests are carried out.

Before the measurement, a reference measurement is performed using a PTFE disc with a diameter of 160 mm and a thickness of 2 mm. The transferred charge of the comparison material must be greater than 60 nC.

The test sample is then moved using a PTFE handle.

Table 12 Reference Measurement Values

Reference Measure- ment	Charging with Spray Electrode	Charging with Polyamide Cloth	Charging with Cotton Cloth
[#]	[nC]	[nC]	[nC]
1	118,5	88,6	87,9
2	111,8	94,7	67,9
3	198,5	77,6	85,4
4	188,7	75,3	76,4
5	145,4	67,2	96,2
6	157,4	81,3	75,1
7	160,4	83,5	80,4
8	109,3	79,4	66,5
9	114,2	74,6	72,5
10	109,8	67,3	76,1

3 TEST RESULT

Ten charging attempts were conducted for each variant. The highest measured charging value is listed in the following Table 4

Table 13 Test Sample Measurement Values

Test Sample	Charging with Spray Electrode	Charging with Cotton Cloth *	Charging with Po- lyamide Cloth
[Nr.]	[nC]	[nC]	[nC]
1.1	No Discharge	No Discharge	No Discharge
1.2	127,6	No Discharge	18,1
1.3	No Discharge	No Discharge	No Discharge
1.4	No Discharge	No Discharge	No Discharge
1.5	18,8	No Discharge	No Discharge
1.6	No Discharge	No Discharge	No Discharge
1.7	No Discharge	No Discharge	No Discharge
1.8	No Discharge	No Discharge	No Discharge
1.9	No Discharge	No Discharge	No Discharge
1.0	No Discharge	No Discharge	No Discharge

^{*} Due to the design, the friction did not occur with consistent force.

4 SUMMARY

Charging processes simulating high charge-generating processes were performed on the mentioned samples according to the test specification. During this, a discharge was measured for test samples 1.2 and 1.5.

The limit values are specified in Table 4 of IEC TS 60079 32 1:2017 as follows.

	Explosion-	EPL Da	EPL Db	EPL Dc	
	group	Zone 20	Zone 21	Zone 22	
	III	60 nC ^a	200 nC ^a	200 nC ^a	
-	^a Values only valid for spark discharges from unearthed conductive or dissipative parts				

According to the limit values in Table 4 of IEC TS 60079 32 1:2017, the discharge aids 1.1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.0 can be used in Zones 20, 21, and 22 (Group III, Dust). Test sample 1.2 can be used in Zones 21 and 22.

Note: The question of application in areas at risk from gas atmospheres is irrelevant, as a critical discharge – due to the process – cannot be excluded.

TÜV SÜD Product Service GmbH Explosion protection

Checked

Prepared by

Moioli, Diego

Project Manager Explosion Protection

B.Eng. Trinkaus, Manuel

Project Manager Explosion Protection