

Mehr Wert.

Mehr Vertrauen.

Technischer Bericht Nr. 713368189

Revision: 00

Vom: 10.04.2025

Antragsteller: SGH Schüttguthandling GmbH & Co. KG

Daimler-Straße 3 78256 Steißlingen Deutschland

Prüfgegenstand Austragshilfe

Prüfgrundlage: Prüfung nach Prüfspezifikation

Prüfspezifikation: EN IEC 60079-0: 2018, Abs. 26.17

IEC TS 60079-32-1:2017 Tabelle 4

Prüfgrundlage für Sicherheits- und Entfällt

Gesundheitsanforderungen, die nicht von den verwendeten Normen abgedeckt werden.

Prüflabor TÜV SÜD Product Service GmbH, Ridlerstraße 65, 80339 München.

Ort der Prüfung Siehe Prüflabor

Prüfmuster: Es wurden 10 unterschiedliche Prüfmuster eingereicht.

Auftragsbeschreibung Ladungstransfermessung von Austragshilfen aus unterschiedlichen Werkstof-

fen gemäß Prüfspezifikation inkl. Kurzbericht.

Prüfergebnis: Es konnte bei zwei von zehn Prüfmustern eine Entladung gemessen werden.

Siehe nachfolgende Abschnitte für Details.

Das Prüfergebnis gilt nur für die genannten Prüfmuster.

Sicherheitstechnisch relevante In- Entfällt

formationen

Dieser Technische Bericht darf nur in vollständigem Wortlaut wiedergegeben werden. Die Verwendung zu Werbezwecken bedarf der schriftlichen Genehmigung. Er enthält das Ergebnis einer einmaligen Untersuchung an dem zur Prüfung vorgelegten Erzeugnis und stellt kein allgemeingültiges Urteil über Eigenschaften aus der laufenden Fertigung dar.

SPEZIFIKATION DES PRÜFGEGENSTANDES 1

1.1 **Beschreibung**

Bei dem Prüfobjekt handelt es sich um Austragshilfen aus unterschiedlichen Werkstoffen. Diese werden in Behältern (Silos, Kleinbehälter, Filter, Sackschütten etc.) und Rohrleitungen eingebaut, um Schüttgüter zu aktivieren und fließfähig zu machen bzw. zu halten.

1.2 Produktbild Prüfmuster

1.1 Silicone

1.3 detectable

1.5 EPDM-FDA

1.2 SAN

1.4 Silicone hot

1.6 EPDM-FDA

Labor Explosionsschutz Ridlerstraße 65

80339 München

Deutschland

1.7 FKM-FDA

1.9 TPE-FDA/EU 1935-2004

1.8 FKM

1.0 VibraPad weiß

1.3 **Technische Daten**

Tabelle 1 Werkstoff Datenblatt VibraPad 100 1.1 SiW SB

Merkmal	Wert
Nennweite	100
Werkstoff	Silikon
Temperaturbereich	-40 °C bis 200 °C
Farbe	Weiß

Tabelle 2 Werkstoff Datenblatt VibraPad 100 1.2 SAN

Merkmal	Wert
Nennweite	100
Werkstoff	Silikon
Temperaturbereich	-30 °C bis 180 °C
Farbe	Blau

Tabelle 3 Werkstoff Datenblatt VibraPad 100 1.3 Detect

Merkmal	Wert
Nennweite	100
Werkstoff	Silikon
Temperaturbereich	-40 °C bis 200 °C
Farbe	Blau

Tabelle 4 Werkstoff Datenblatt VibraPad 100 1.4 hot

Merkmal	Wert	
Nennweite	100	
Werkstoff	Silikon	
Temperaturbereich	-40 °C bis 300 °C	
Farbe	Rot-orange	

Tabelle 5 Werkstoff Datenblatt VibraPad 100 1.5 EPDMs

Merkmal	Wert	
Nennweite	100	
Werkstoff	EPDM	
Temperaturbereich	150 °C	
Farbe	Schwarz	

Dateiname:

Tabelle 6 Werkstoff Datenblatt VibraPad 100 1.6 EPDMw

Merkmal	Wert	
Nennweite	100	
Werkstoff	EPDM	
Temperaturbereich	100 °C	
Farbe	Weiß	

Tabelle 7 Werkstoff Datenblatt VibraPad 100 1.7 FKM

Merkmal	Wert
Nennweite	100
Werkstoff	FKM
Temperaturbereich	220 °C
Farbe	Grün

Tabelle 8 Werkstoff Datenblatt VibraPad 100 1.8 FKM

Merkmal	Wert
Nennweite	100
Werkstoff	FKM
Temperaturbereich	220 °C
Farbe	Schwarz

Tabelle 9 Werkstoff Datenblatt VibraPad 100 1.9 TPE

Merkmal	Wert
Nennweite	100
Werkstoff	TPE
Werkstoff-Nr.	-40 bis 120 °C
Farbe	Weiß

Tabelle 10 Werkstoff Datenblatt VibraPad 100 SIB SB (vergleichbar 1.1)

Merkmal	Wert
Nennweite	100
Werkstoff	Silikon
Temperaturbereich	-60 bis 200 °C
Farbe	Blau

Diese Informationen wurden vom Auftraggeber zur Verfügung gestellt, die Materialeigenschaften wurden nicht verifiziert.

2 TESTAUFBAU

2.1 Konditionieren

Das Prüfmuster wird mit Isopropylalkohol gereinigt, mit destilliertem Wasser abgespült und getrocknet. Anschließend wird das Prüfmuster in einer begehbaren Klimakammer für 24 h bei 21 °C und 26 % r. F. gelagert.

2.2 Verwendete Messgeräte

Für die Prüfung wurden folgende Messmittel herangezogen:

Tabelle 11 Messmittel

Messmittel	TM ID	Kalibriert bis
Coulombmeter	5965	06.09.2026
Hochspannungserzeuger mit Corona Aufladungsspitze	5974	entfällt (Zusatz)
Metallplatte geerdet	entfällt	entfällt
PTFE-Rundscheibe 200 cm ²	52622	entfällt (Zusatz)
Polyamid Tuch	entfällt	entfällt
Baumwolltuch	entfällt	Entfällt
Klimakammer	42	06.11.2025

1 Metallplatte geerdet und Referenzscheibe aus PTFE

2 Hochspannungserzeuger mit Corona Aufladungsspitze

2.3 Durchführung

Die Prüfung wird in einem Raum mit einer Temperatur von 22 °C und 27 % relativer Feuchte durchgeführt.

Die Messung der übertragenen Ladung des Prüfmusters wird mit drei Verfahren durchgeführt:

- Aufladen durch Reiben mit einem Tuch aus reinem Polyamid
- Aufladen durch Reiben mit einem Baumwolltuch
- Aufladen mit einer Gleichstrom-Hochspannungsquelle

Das Prüfmuster wird auf eine geerdete Metallplatte gelegt.

Die Aufladung des Prüfmittels durch Reibung erfolgt durch zehnmaliges Reiben mit dem Polyamid- bzw. Baumwolltuch.

Die Aufladung mit der Gleichstrom-Hochspannungsquelle erfolgt durch eine Sprühelektrode, welche 30 mm über dem Prüfmuster von der Oberfläche angeordnet und mit einer Spannung von 70 kV zwischen der negativen Elektrode und Erde aufgeladen ist. Die Sprühelektrode wird dabei für 30s bewegt.

Anschließend wird das Prüfmuster vorsichtig und ohne es zu entladen von der Tischplatte entfernt. Das Prüfmuster wird getestet, indem die Kugelelektrode (Durchmesser 25 mm) des Coulombmeters langsam angenähert wird, bis es zu einer Entladung kommt. Für jede Art der Aufladung werden 10 Versuche durchgeführt.

Vor der Messung wird eine Referenzmessung mittels PTFE-Scheibe mit einem Durchmesser von 160 mm und einer Dicke von 2 mm durchgeführt. Die übertragene Ladung des Vergleichsmaterials muss über 60 nC liegen.

Das Prüfmuster wird im Anschluss mit einem Haltegriff aus PTFE bewegt.

Tabelle 12 Referenzmesswerte

Referenz- messung	Aufladung mit Sprühelektrode	Aufladung mit Polyamidtuch	Aufladung mit Baum- wolltuch
[#]	[nC]	[nC]	[nC]
1	118,5	88,6	87,9
2	111,8	94,7	67,9
3	198,5	77,6	85,4
4	188,7	75,3	76,4
5	145,4	67,2	96,2
6	157,4	81,3	75,1
7	160,4	83,5	80,4
8	109,3	79,4	66,5
9	114,2	74,6	72,5
10	109,8	67,3	76,1

PRÜFERGEBNIS 3

Für jede Variante wurden zehn Aufladungsversuche durchgeführt. In der nachfolgenden Tabelle 4 ist jeweils der höchste gemessene Aufladewert aufgeführt.

Tabelle 13 Messwerte Prüfmuster

Prüfmuster	Aufladung mit Sprühelektrode	Aufladung mit Baumwolltuch*	Aufladung mit Po- lyamid Tuch*
[Nr.]	[nC]	[nC]	[nC]
1.1	Keine Entladung	keine Entladung	keine Entladung
1.2	127,6	keine Entladung	18,1
1.3	keine Entladung	keine Entladung	keine Entladung
1.4	keine Entladung	keine Entladung	keine Entladung
1.5	18,8	keine Entladung	keine Entladung
1.6	keine Entladung	keine Entladung	keine Entladung
1.7	keine Entladung	keine Entladung	keine Entladung
1.8	keine Entladung	keine Entladung	keine Entladung
1.9	keine Entladung	keine Entladung	keine Entladung
1.0	keine Entladung	keine Entladung	keine Entladung

^{*} Konstruktionsbedingt erfolgte die Reibung nicht mit gleichbleibender Kraft.

Labor Explosionsschutz

Ridlerstraße 65 80339 München Deutschland

4 ZUSAMMENFASSUNG

An den genannten Mustern wurden Ladungsvorgänge, die hoch ladungserzeuge Prozesse simulieren, entsprechend der Prüfspezifikation durchgeführt. Hierbei konnte bei Prüfmuster 1.2 und 1.5 eine Entladung gemessen werden.

Die Grenzwerte sind in Tabelle 4 der IEC TS 60079-32-1:2017 wie folgt angegeben.

Explosions-	EPL Da	EPL Db	EPL Dc	
gruppe	Zone 20	Zone 21	Zone 22	
III	60 nC ^a	200 nC ^a	200 nC ^a	
^a Werte gelten nur für Funkenentladungen von ungeerdeten leitfähigen oder ableitfähigen Teilen.				

Entsprechend der Grenzwerte der Tabelle 4 der IEC TS 60079-32-1:2017, sind die Austragshilfen 1.1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 und 1.0 in den Zonen 20, 21 und 22 (Gruppe III, Staub) einsetzbar. Das Prüfmuster 1.2 ist in Zone 21 und 22 einsetzbar.

Hinweis: Die Frage der Anwendung in durch Gasatmosphäre gefährdete Bereiche erübrigt sich, da eine kritische Entladung – prozessbedingt – nicht ausgeschlossen werden kann.

Erstellt

TÜV SÜD Product Service GmbH Explosionsschutz

Geprüft

Moioli, Diego

Projektleiter Explosionsschutz

B.Eng. Trinkaus, Manuel

Projektleiter Explosionsschutz

Dateiname: